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TECHNICAL INFORMATION 
THE LOGIC AND CODE BEHIND THE COVER & TOC GRAPHS 

David J. Cox1,2

1 INSTITUTE FOR APPLIED BEHAVIORAL SCIENCE, ENDICOTT COLLEGE, 2 RETHINKFIRST 

Visualizing behavioral data in unique ways may lead to novel methods of analysis and, perhaps, new 
ways of thinking about environment-behavior relations. In the spirit of transparency and to help 
others discover interesting things in their own textual data, below is the code to create the plots shown 
on the cover and table of contents in this volume. Some familiarity with Python is needed (i.e., how to 
open a script, read in files, and execute the program). A downloadable file of the referenced Python 
script is available here: https://osf.io/b6xuh/. If the code is all you’re after, you can stop reading 
here. Otherwise, the text below describes a bit more about the mathematical and computational logic 
behind the individual article figures, how they relate to the data shown on the cover page, and why 
certain decisions were made. Happy coding and playing! 
 
Keywords: natural language processing, embeddings, Euclidean distance, Convex Hull volume

The theme of this special issue is “emerging topics 
from emerging voices”. To capture this visually, I 
thought it might be interesting to visualize how 
the topics within each article emerged while a 
reader reads an article from the first sentence to 
the last. To do this, two things are required: 1) get 
the topics for each sentence, and 2) show how the 
topics emerge sequentially.  

There are many ways someone might define 
the topic(s) of a sentence. Most sentences are about 
things (nouns) and what those things do (verbs). 
Thus, once basic pre-processing of each article was 
completed (e.g., Bengfort et al., 2018; Silge & 
Robinson, 2017), each sentence was trimmed to 
only the nouns and verbs in that sentence (Figure 
1).  

To do mathematical things with textual 
stimuli, we need to turn the text into numbers. 
One way to do this is through embeddings. In 
natural language processing, embeddings are 
numeric representations of textual stimuli in the 
form of a vector of real numbers. There are many 
available techniques to turn textual stimuli into a 
vector of real numbers and readers interested in 
learning more about these techniques are 
encouraged to review Birunda & Devi (2021) and 
Johnson et al. (2024). Creating a novel set of 
embeddings, however, typically requires a large 
amount of data. As such, every sentence for every 
manuscript in this issue was embedded using the 
pre-trained embedding model paraphrase-
MiniLM-L6-v2 (Reimers & Gurevych, 2019). This 
model is a modified version of the pretrained 
BERT network (Devlin et al., 2018) designed 
specifically to be lightweight and faster while 

maintaining accuracy as compared to the full 
BERT model. 

As vectors, embeddings give a numeric point 
in a high-dimensional space that represents the 
content of the sentence. Thus, two points in the 
vector space close to one another are more similar 
in content than two points in the vector space that 
are further apart. A similar idea in a two-
dimensional vector space is that of latitude and 
longitude to represent the global position of 
anything on the planet Earth. Using a vector of 
two numbers, for example, we know that the 
greatest baseball park of all time is located at 
[40.4475O N, 80.0072O W]. By comparing other 
latitude and longitude vectors, we can determine 
how close other geographical points are to the 
greatest baseball park of all time. The paraphrase-
MiniLM-L6-v2 model accomplishes this same idea 
but with sentences and in a 384-dimensional 
vector space (Figure 1).  

Humans have a difficult time “seeing” things 
in 384 dimensions. We live in a three-dimensional 
world, which can be tricky enough at times (ever 
try to hit a curveball?), and actively adding in the 
fourth dimension—time—can sometimes wreak 
havoc on our behavior (e.g., Amlung et al., 2019; 
Green et al., 1994). Thus, to aid in the visualization 
of each article for us mere humans, the total 
dimensions of each vector were reduced from 384 
to three using principal component analysis (PCA; 
e.g., Gewers et al., 2021) via the scikit-learn
package in Python (Pedregosa et al., 2011). The
result is that each sentence now has a three-
dimensional vector description of the nouns and
verbs from that sentence (far right, Figure 1).

As a three-dimensional vector, we can graph 
each sentence as a point in a three-dimensional https://doi.org/10.17605/OSF.IO/B6XUH 



EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

99 

space. These are the nodes (i.e., circular markers) 
in the visualizations created for the table of 
contents. That is, each node is the location of a 
sentence in the article as denoted by the three-
dimensional vector space derived from the 
process described above.  

Continuing this logic, as you read from 
sentence to sentence in an article, you move from 
node to node within a three-dimensional vector 
space (Figure 2). The arrows in each data 
visualization, therefore, show you the sequence of 
moving from sentence to sentence in a three-
dimensional vector space. To help you find the 
start, the very first sentence is shown as the largest 
green node. And, to help you find where it ends, 
the very last sentence is shown as the largest red 
node. Lastly, because these things are still visually 
quite complex, the coloring of all the nodes (i.e., 
sentences) from first to last are colored from green 
to red along a systematically changing gradient. 
The greener the node means closer to the 
beginning of the article; yellow means you are in 
the middle; and the redder the node means closer 
to the end of the article. In total, the result of 
combining the above is that you can visually see 
how the topics of each article emerge relative to all 
other sentences as you read through the article 
from front to back. 

But what does each visualization tell you 
about the article? One answer might be how much 
“movement” from topic-to-topic occurs within a 
manuscript. Because each sentence is a point in 
space, we can quantify the distance between two 
sentences via the length of a line connecting those 
two points (i.e., the Euclidean distance; e.g., 
Figure 2). A longer distance between two 

sentences would, thus, represent larger changes in 
sentence topics. And shorter distances between 
two sentences would represent shorter changes in 
sentence topics. Over the course of an article, we 
can get the cumulative sum of the total Euclidean 
distance traveled as we read from the first 
sentence to the last sentence in the article. This is 
the y-axis on the cover art. The greater the 

Figure 1. Example of the sequence of textual transformations from a raw, published sentence through simple pre-
processing, conversion to a noun-verb list, and sentence embedding.  

Figure 2. Example of how distance traveled is 
calculated from node to node (i.e., sentence-to-
sentence) within each article.  
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Euclidean distance to cover, the greater the total 
movement across topics throughout the article.  

Understanding the total distance traveled 
doesn’t tell you the total scope or range of topics 
covered in the article. For example, one could 
bounce back and forth between two sentences, 
each being completely different in topic, and the 
total distance traveled would be quite large but 
would look like a straight line between two points 
(e.g., points 5, 6, and 7 that form a straight line in 
Figure 2).  

One method to capture the total topic scope of 
an article might be through an idea from 
geometry. Each article leads to a unique structure 
in three-dimensional space created from the 
movement through the topic vector space from the 
first sentence to the last sentence. Now, imagine 
gift wrapping each of those visualizations using 
your favorite holiday gift wrapping. The result is 
a complex, geometrical shape unique to the topic 
space covered by that article (Figure 3 shows three 
angles for one of the articles). In geometry, this 
shape is termed a convex hull and our friends in 
computational geometry have given us the means 
to compute it easily using computers (e.g., Avis et 
al., 1997; Preparata & Shamos, 1985)—thanks, 
friends!  

As an object with a known scale in three 
dimensions, we can use computers to compute the 
volume of each convex hull. This is the x-axis on 
the cover art. The greater the convex hull of an 
article, the greater the total topic space covered 
throughout the article. Of note is the absence of a 
perfect correlation between the total Euclidean 
distance and the convex hull volume suggesting 
they provide unique quantitative descriptions of 
each article.  

But are these useful ways to quantitatively 
model scientific writing? Who knows. Only time 
will tell what methods for visualizing and 
quantitatively analyzing verbal behavior are 
useful. I can say they sure were fun to make. 
However, there are some obvious potential use 
cases for each measure that might prove fruitful 
for more serious academic work on the 
quantitative analyses of verbal behavior.  

One use might be to quantitatively and more 
precisely define elements of writing style (e.g., 
Strunk & White, 1959; Williams, 1990). Using the 
total distance traveled metric, large jumps in 
topics from sentence to sentence and across the 
total landscape comprised by an article might 
suggest the article is more difficult to read when 
compared to sentence transitions that make the 
reader “work less”. But, too small of jumps might 
also indicate too much handholding in topic 

Figure 3. Visual demonstration of converting the topic space covered by an article into its convex hull. 
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transitions, be overly verbose, and state too many 
things obvious to the reader. Fun to think about is 
if “ideal” distances exist based on the influence the 
writer hopes to have on specific types of readers. 

Convex hull volume also seems relevant to 
manuscript readability. Imagine two manuscripts 
with identical and overlapping convex hull 
volumes in three-dimensional space. The density 
of each might be calculated by dividing the total 
volume by the number of words or sentences in 
the article. This could give a metric for measuring 
relative claims about “omitting needless words” 
and sufficient brevity in one’s writing. That is, if 
you can cover the same ground in fewer words, 
the less dense article might be easier to digest.  

If you got this far, thanks for reading. I hope 
you enjoyed these data visualizations of this 
special issue as much as I enjoyed making them. 
Happy quantitative and computational analyzing! 
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# -*- coding: utf-8 -*- 

## Packages Needed 
# Data manipulation 
from IPython.display import clear_output 
import pandas as pd 
import numpy as np 

try: 
  from docx import Document 
except: 
!pip install python-docx
clear_output()
from docx import Document

# NLP 
import nltk 
from nltk.corpus import stopwords 
from nltk.tokenize import sent_tokenize, word_tokenize 
import string 
nltk.download('punkt') 
nltk.download('stopwords') 
try: 
  from sentence_transformers import SentenceTransformer 
except: 
!pip install sentence-transformers
clear_output()
from sentence_transformers import SentenceTransformer

try: 
  import spacy 
  nlp = spacy.load('en_core_web_sm') 
except: 
!pip install spacy
!python -m spacy download en_core_web_sm
clear_output()
import spacy
nlp = spacy.load('en_core_web_sm')

# Dimensionality reduction 
from sklearn.decomposition import PCA 

# Topology calculations 
from scipy.spatial import ConvexHull 
from scipy.spatial.distance import euclidean 

# Data visualization 
import seaborn as sns 
import matplotlib.pyplot as plt 
import plotly.graph_objs as go 
from matplotlib import cm 

"""## Functions""" 
def extract_text_from_docx(file_path): 
    doc = Document(file_path) 
    return "\n".join([para.text for para in doc.paragraphs]) 

def preprocess_text(text): 
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    stop_words = set(stopwords.words('english')) 
    sentences = sent_tokenize(text) 
    cleaned_sentences = [] 
    for sentence in sentences: 
        words = word_tokenize(sentence) 
        cleaned_words = [word.lower() for word in words if word.isalpha() and word not in stop_words] 
        cleaned_sentences.append(" ".join(cleaned_words)) 
    return cleaned_sentences 

def extract_nouns_verbs(sentence): 
    # Process the sentence using spaCy 
    doc = nlp(sentence) 

    # Extract nouns and verbs 
    nouns_verbs = [token.text for token in doc if token.pos_ in ('NOUN', 'VERB')] 

    # Join the nouns and verbs back into a sentence 
    return ' '.join(nouns_verbs) 

def get_embeddings(sentences): 
    model = SentenceTransformer('paraphrase-MiniLM-L6-v2') 
    return model.encode(sentences, show_progress_bar=False) 

def calculate_area_and_distance(embeddings): 
    # Calculate the convex hull 
    hull = ConvexHull(embeddings) 

    # Calculate the surface area of the convex hull 
    area = hull.area 

    # Calculate the total distance traveled by summing the distances between consecutive points 
    total_distance = sum(euclidean(embeddings[i], embeddings[i+1]) for i in range(len(embeddings) - 1)) 

    return area, total_distance 

def reduce_dimensions(embeddings, n_components=3): 
    # Reduce the feature space 
    pca = PCA(n_components=n_components) 
    reduced_embeddings = pca.fit_transform(embeddings) 

    # Calculate variance explained 
    explained_variance = pca.explained_variance_ratio_ 
    total_explained_variance = np.sum(explained_variance) 

    return reduced_embeddings, total_explained_variance 

def plot_embeddings_with_arrows_plotly(embeddings, node_size=10, plot_height=800): 
    # Create a gradient of colors from green to red 
    cmap = cm.get_cmap('RdYlGn_r', len(embeddings))     # Reversed 'RdYlGn' to go from green to red 
    colors = [cmap(i) for i in range(len(embeddings))]  # Get color for each point 
    colors = ['rgba({}, {}, {}, 1)'.format(int(c[0]*255), int(c[1]*255), int(c[2]*255)) for c in colors] 

    # Initialize figure 
    fig = go.Figure() 
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    # Add scatter points for all embeddings with gradient colors 
    scatter_sizes = [node_size*2 if i == 0 or i == len(embeddings) - 1 else node_size for i in 

range(len(embeddings))] 

    for i in range(len(embeddings)): 
        fig.add_trace(go.Scatter3d( 
            x=[embeddings[i, 0]], 
            y=[embeddings[i, 1]], 
            z=[embeddings[i, 2]], 
            mode='markers', 
            marker=dict(size=scatter_sizes[i], color=colors[i]), 
            name=f'Sentence {i+1}' 
        )) 

    # Add arrows as lines between points with cones at the end 
    for i in range(len(embeddings) - 1): 

        # Calculate the direction vector 
        direction = embeddings[i + 1] - embeddings[i] 

        # Normalize the direction vector and multiply by the node size to offset the arrow head 
        norm_direction = direction / np.linalg.norm(direction) 

        # Adjust position so the tip stops before the next node 
        cone_start = embeddings[i + 1] - norm_direction * (scatter_sizes[i + 1] / 40) 

        # Plot the arrow line 
        fig.add_trace(go.Scatter3d( 
            x=[embeddings[i, 0], cone_start[0]], 
            y=[embeddings[i, 1], cone_start[1]], 
            z=[embeddings[i, 2], cone_start[2]], 
            mode='lines', 
            line=dict(color='black', width=2, dash='solid'), 
            opacity=0.6 
        )) 

        # Plot the cone 
        fig.add_trace(go.Cone( 
            x=[cone_start[0]], 
            y=[cone_start[1]], 
            z=[cone_start[2]], 
            u=[norm_direction[0]], 
            v=[norm_direction[1]], 
            w=[norm_direction[2]], 
            sizemode="absolute", 
            sizeref=0.2, 
            showscale=False, 
            colorscale=[[0, 'black'], [1, 'black']] 
        )) 

    # Update layout to remove gray background, axis labels, and ticks 
    fig.update_layout( 
        title='', 
        scene=dict( 
            xaxis=dict( 

showbackground=False,  # Remove gray background from plot 
showticklabels=False,  # Remove axis ticks 
title='',              # Remove axis labels 
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            ), 
            yaxis=dict( 

showbackground=False, 
showticklabels=False, 
title='', 

            ), 
            zaxis=dict( 

showbackground=False, 
showticklabels=False, 
title='', 

            ) 
        ), 
        showlegend=False, 

        # Adjust margins to make better use of space 
        margin=dict(l=0, r=0, b=0, t=40), 

        # Set the height of the plot for easier interaction and recording 
        height=plot_height 
    ) 

    fig.show() 

def plot_convex_hull_3d_plotly(embeddings, plot_height=1000): 
    # Ensure embeddings are in 3D 
    if embeddings.shape[1] > 3: 
        embeddings = reduce_dimensions(embeddings, n_components=3) 

    # Compute the convex hull 
    hull = ConvexHull(embeddings) 

    # Create the plotly figure 
    fig = go.Figure() 

    # Plot the convex hull by adding the triangles that make up the hull 
    for simplex in hull.simplices: 
        # Each simplex is a triangle in 3D space 
        fig.add_trace(go.Mesh3d( 
            x=embeddings[simplex, 0], 
            y=embeddings[simplex, 1], 
            z=embeddings[simplex, 2], 
            color='rgba(0, 0, 255, 0.8)',  # Set a translucent color for the triangles 
            opacity=0.5, 
            showscale=False 
        )) 

    # Plot the red lines along the edges of the convex hull 
    for i in range(len(hull.simplices)): 
        for j in range(3): 
            fig.add_trace(go.Scatter3d( 

x=[embeddings[hull.simplices[i, j], 0], embeddings[hull.simplices[i, (j+1) % 3], 0]], 
y=[embeddings[hull.simplices[i, j], 1], embeddings[hull.simplices[i, (j+1) % 3], 1]], 
z=[embeddings[hull.simplices[i, j], 2], embeddings[hull.simplices[i, (j+1) % 3], 2]], 
mode='lines', 
line=dict(color='red', width=3), 
showlegend=False 

            )) 
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    # Update layout to remove gray background, axis labels, and ticks 
    fig.update_layout( 
        title='', 
        scene=dict( 
            xaxis=dict( 

showbackground=False,  # Remove gray background from plot 
showticklabels=False,  # Remove axis ticks 
title='',              # Remove axis labels 

            ), 
            yaxis=dict( 

showbackground=False, 
showticklabels=False, 
title='', 

            ), 
            zaxis=dict( 

showbackground=False, 
showticklabels=False, 
title='', 

            ) 
        ), 
        showlegend=False, 

        # Adjust margins to make better use of space 
        margin=dict(l=0, r=0, b=0, t=40), 

        # Set the height of the plot for easier interaction and recording 
        height=plot_height 
    ) 

    # Show the plot 
    fig.show() 

"""## Read in the different articles""" 
files = [ 
    'Falligant et al..docx', 
    'Mohamed et al..docx', 
    'Randall et al..docx', 
    'Regaço et al..docx', 
    'Craig et al..docx',  
    'Simon.docx', 
    'Williams et al..docx'] 
texts = [extract_text_from_docx(file) for file in files] 

"""## Preprocess the Text""" 
processed_texts = [preprocess_text(text) for text in texts] 

noun_verb = [] 
for text in processed_texts: 
  nouns_verbs_text = [extract_nouns_verbs(sentence) for sentence in text] 
  nouns_verbs_text = [sent for sent in nouns_verbs_text if len(sent)>1] 
  noun_verb.append(nouns_verbs_text) 

"""## Generate Vector Embeddings""" 
embeds = [] 
for text in noun_verb: 
  embeds.append([get_embeddings(sentences) for sentences in text]) 
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"""## Emergence of topics through each manuscript""" 
vac = [] 
convex_hull = [] 
tot_dist = [] 

for article in embeds: 
    reduced_embeddings, vac_embeds = reduce_dimensions(embeds[article]) 
    vac.append(vac_embeds) 
    area, total_distance = calculate_area_and_distance(reduced_embeddings) 
    convex_hull.append(area) 
    tot_dist.append(total_distance) 
    plot_embeddings_with_arrows_plotly(reduced_embeddings, plot_height=1000) 
    plot_convex_hull_3d_plotly(reduced_embeddings) 

# All texts 
all_embeds = [item for sublist in embeds for item in sublist] 
reduced_embeddings, vac_embeds = reduce_dimensions(all_embeds) 
vac.append(vac_embeds) 
area, total_distance = calculate_area_and_distance(reduced_embeddings) 
convex_hull.append(area) 
tot_dist.append(total_distance) 
plot_embeddings_with_arrows_plotly(reduced_embeddings, plot_height=1000) 
plot_convex_hull_3d_plotly(reduced_embeddings) 

"""## Metrics from each article""" 
docs = [ 
    'Falligant et al.', 
    'Mohamed et al.', 
    'Randall et al.', 
    'Regaço et al.', 
    'Simon', 
    'Craig et al.',  
    'Williams et al.', 
    'All Articles' 
] 

metrics = pd.DataFrame({ 
    'document': docs, 
    'vac':vac, 
    'convex_hull':convex_hull, 
    "total_distance":tot_dist 
}) 

# Invert colors 
plt.figure(figsize=(7, 7.5)) 
plt.scatter(metrics['convex_hull'], metrics['total_distance'], s=500, alpha=0.5, c='red') 

# Axis labels with inverted color 
plt.xlabel('Convex Hull Volume', fontsize=28, color='white', labelpad=12) 
plt.ylabel('Euclidean Distance to Travel', fontsize=28, color='white', labelpad=12) 

# Annotate bubbles with text in white 
for i, txt in enumerate(metrics['document']): 
    plt.annotate(txt, (metrics['convex_hull'][i]+5.5, metrics['total_distance'][i]), 
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fontsize=12, ha='left', va='center', color='white') 

# Set limits 
# plt.ylim(250, 1100) 
plt.xlim(120, 260) 
plt.yscale("log") 
ticks = [300, 600, 1200, 2400] 
plt.yticks(ticks=ticks, labels=ticks) 

# Invert colors for the plot background and spines 
plt.gca().set_facecolor('#101010') 
plt.gca().spines['top'].set_color('white') 
plt.gca().spines['bottom'].set_color('white') 
plt.gca().spines['left'].set_color('white') 
plt.gca().spines['right'].set_color('white') 

# Invert tick colors 
plt.gca().tick_params(axis='x', colors='white') 
plt.gca().tick_params(axis='y', colors='white') 

# Remove the top and right spines 
sns.despine(top=True, right=True, left=False, bottom=False) 

# Set the figure background to black 
plt.gcf().set_facecolor('#101010') 

# Show the plot 
plt.show() 


