
EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

98

TECHNICAL INFORMATION
THE LOGIC AND CODE BEHIND THE COVER & TOC GRAPHS

David J. Cox1,2

1 INSTITUTE FOR APPLIED BEHAVIORAL SCIENCE, ENDICOTT COLLEGE, 2 RETHINKFIRST

Visualizing behavioral data in unique ways may lead to novel methods of analysis and, perhaps, new
ways of thinking about environment-behavior relations. In the spirit of transparency and to help
others discover interesting things in their own textual data, below is the code to create the plots shown
on the cover and table of contents in this volume. Some familiarity with Python is needed (i.e., how to
open a script, read in files, and execute the program). A downloadable file of the referenced Python
script is available here: https://osf.io/b6xuh/. If the code is all you’re after, you can stop reading
here. Otherwise, the text below describes a bit more about the mathematical and computational logic
behind the individual article figures, how they relate to the data shown on the cover page, and why
certain decisions were made. Happy coding and playing!

Keywords: natural language processing, embeddings, Euclidean distance, Convex Hull volume

The theme of this special issue is “emerging topics
from emerging voices”. To capture this visually, I
thought it might be interesting to visualize how
the topics within each article emerged while a
reader reads an article from the first sentence to
the last. To do this, two things are required: 1) get
the topics for each sentence, and 2) show how the
topics emerge sequentially.

There are many ways someone might define
the topic(s) of a sentence. Most sentences are about
things (nouns) and what those things do (verbs).
Thus, once basic pre-processing of each article was
completed (e.g., Bengfort et al., 2018; Silge &
Robinson, 2017), each sentence was trimmed to
only the nouns and verbs in that sentence (Figure
1).

To do mathematical things with textual
stimuli, we need to turn the text into numbers.
One way to do this is through embeddings. In
natural language processing, embeddings are
numeric representations of textual stimuli in the
form of a vector of real numbers. There are many
available techniques to turn textual stimuli into a
vector of real numbers and readers interested in
learning more about these techniques are
encouraged to review Birunda & Devi (2021) and
Johnson et al. (2024). Creating a novel set of
embeddings, however, typically requires a large
amount of data. As such, every sentence for every
manuscript in this issue was embedded using the
pre-trained embedding model paraphrase-
MiniLM-L6-v2 (Reimers & Gurevych, 2019). This
model is a modified version of the pretrained
BERT network (Devlin et al., 2018) designed
specifically to be lightweight and faster while

maintaining accuracy as compared to the full
BERT model.

As vectors, embeddings give a numeric point
in a high-dimensional space that represents the
content of the sentence. Thus, two points in the
vector space close to one another are more similar
in content than two points in the vector space that
are further apart. A similar idea in a two-
dimensional vector space is that of latitude and
longitude to represent the global position of
anything on the planet Earth. Using a vector of
two numbers, for example, we know that the
greatest baseball park of all time is located at
[40.4475O N, 80.0072O W]. By comparing other
latitude and longitude vectors, we can determine
how close other geographical points are to the
greatest baseball park of all time. The paraphrase-
MiniLM-L6-v2 model accomplishes this same idea
but with sentences and in a 384-dimensional
vector space (Figure 1).

Humans have a difficult time “seeing” things
in 384 dimensions. We live in a three-dimensional
world, which can be tricky enough at times (ever
try to hit a curveball?), and actively adding in the
fourth dimension—time—can sometimes wreak
havoc on our behavior (e.g., Amlung et al., 2019;
Green et al., 1994). Thus, to aid in the visualization
of each article for us mere humans, the total
dimensions of each vector were reduced from 384
to three using principal component analysis (PCA;
e.g., Gewers et al., 2021) via the scikit-learn
package in Python (Pedregosa et al., 2011). The
result is that each sentence now has a three-
dimensional vector description of the nouns and
verbs from that sentence (far right, Figure 1).

As a three-dimensional vector, we can graph
each sentence as a point in a three-dimensional https://doi.org/10.17605/OSF.IO/B6XUH

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

99

space. These are the nodes (i.e., circular markers)
in the visualizations created for the table of
contents. That is, each node is the location of a
sentence in the article as denoted by the three-
dimensional vector space derived from the
process described above.

Continuing this logic, as you read from
sentence to sentence in an article, you move from
node to node within a three-dimensional vector
space (Figure 2). The arrows in each data
visualization, therefore, show you the sequence of
moving from sentence to sentence in a three-
dimensional vector space. To help you find the
start, the very first sentence is shown as the largest
green node. And, to help you find where it ends,
the very last sentence is shown as the largest red
node. Lastly, because these things are still visually
quite complex, the coloring of all the nodes (i.e.,
sentences) from first to last are colored from green
to red along a systematically changing gradient.
The greener the node means closer to the
beginning of the article; yellow means you are in
the middle; and the redder the node means closer
to the end of the article. In total, the result of
combining the above is that you can visually see
how the topics of each article emerge relative to all
other sentences as you read through the article
from front to back.

But what does each visualization tell you
about the article? One answer might be how much
“movement” from topic-to-topic occurs within a
manuscript. Because each sentence is a point in
space, we can quantify the distance between two
sentences via the length of a line connecting those
two points (i.e., the Euclidean distance; e.g.,
Figure 2). A longer distance between two

sentences would, thus, represent larger changes in
sentence topics. And shorter distances between
two sentences would represent shorter changes in
sentence topics. Over the course of an article, we
can get the cumulative sum of the total Euclidean
distance traveled as we read from the first
sentence to the last sentence in the article. This is
the y-axis on the cover art. The greater the

Figure 1. Example of the sequence of textual transformations from a raw, published sentence through simple pre-
processing, conversion to a noun-verb list, and sentence embedding.

Figure 2. Example of how distance traveled is
calculated from node to node (i.e., sentence-to-
sentence) within each article.

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

100

Euclidean distance to cover, the greater the total
movement across topics throughout the article.

Understanding the total distance traveled
doesn’t tell you the total scope or range of topics
covered in the article. For example, one could
bounce back and forth between two sentences,
each being completely different in topic, and the
total distance traveled would be quite large but
would look like a straight line between two points
(e.g., points 5, 6, and 7 that form a straight line in
Figure 2).

One method to capture the total topic scope of
an article might be through an idea from
geometry. Each article leads to a unique structure
in three-dimensional space created from the
movement through the topic vector space from the
first sentence to the last sentence. Now, imagine
gift wrapping each of those visualizations using
your favorite holiday gift wrapping. The result is
a complex, geometrical shape unique to the topic
space covered by that article (Figure 3 shows three
angles for one of the articles). In geometry, this
shape is termed a convex hull and our friends in
computational geometry have given us the means
to compute it easily using computers (e.g., Avis et
al., 1997; Preparata & Shamos, 1985)—thanks,
friends!

As an object with a known scale in three
dimensions, we can use computers to compute the
volume of each convex hull. This is the x-axis on
the cover art. The greater the convex hull of an
article, the greater the total topic space covered
throughout the article. Of note is the absence of a
perfect correlation between the total Euclidean
distance and the convex hull volume suggesting
they provide unique quantitative descriptions of
each article.

But are these useful ways to quantitatively
model scientific writing? Who knows. Only time
will tell what methods for visualizing and
quantitatively analyzing verbal behavior are
useful. I can say they sure were fun to make.
However, there are some obvious potential use
cases for each measure that might prove fruitful
for more serious academic work on the
quantitative analyses of verbal behavior.

One use might be to quantitatively and more
precisely define elements of writing style (e.g.,
Strunk & White, 1959; Williams, 1990). Using the
total distance traveled metric, large jumps in
topics from sentence to sentence and across the
total landscape comprised by an article might
suggest the article is more difficult to read when
compared to sentence transitions that make the
reader “work less”. But, too small of jumps might
also indicate too much handholding in topic

Figure 3. Visual demonstration of converting the topic space covered by an article into its convex hull.

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

101

transitions, be overly verbose, and state too many
things obvious to the reader. Fun to think about is
if “ideal” distances exist based on the influence the
writer hopes to have on specific types of readers.

Convex hull volume also seems relevant to
manuscript readability. Imagine two manuscripts
with identical and overlapping convex hull
volumes in three-dimensional space. The density
of each might be calculated by dividing the total
volume by the number of words or sentences in
the article. This could give a metric for measuring
relative claims about “omitting needless words”
and sufficient brevity in one’s writing. That is, if
you can cover the same ground in fewer words,
the less dense article might be easier to digest.

If you got this far, thanks for reading. I hope
you enjoyed these data visualizations of this
special issue as much as I enjoyed making them.
Happy quantitative and computational analyzing!

REFERENCES

Amlung, M., Marsden, E., Holshausen, K., Morris, V.,
Patel, H., Vedalgo, L., Naish, K. R., Reed, D. D., &
McCabe, R. E. (2019). Delay discounting as a
transdiagnostic process in psychiatric disorders: A
meta-analysis. JAMA Psychiatry, 76(11), 1176-1186.
https://doi.org/10.1001/jamapsychiatry.2019.2102

Avis, D., Bremner, D., & Seidel, R. (1997). Hw good are
convex hull algorithms? Computational Geometry, 7(5-
6), 265-301. https://doi.org/10.1016/S0925-
7721(96)00023-5

Bengfort, B., Bilbro, R., & Ojdea, T. (2018). Applied Text
Analysis with Python: Enabling Language-Aware Data
Products with Machine Learning. O’Reilly Media.
ISBN: 1491963042

Birunda, S. S., & Devi, R. K. (2021). A review on word
embedding techniques for text classification. In: J. S.
Raj, A. M. Iliyasu, R. Bestak, & Z. A. Baig (Eds.)
Innovative Data Communication Technologies and
Application. Lecture Notes on Data Engineering and
Communications Technologies, vol 59 (pp. 267-282).
Springer. https://doi.org/10.1007/978-981-15-9651-
3_23

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.
(2018). BERT: Pre-training of deep bidirectional
transformers for language understanding.
https://arxiv.org/abs/1810.04805

Gewers, F. L., Ferreira, G. R., De Arruda, H. F., Silva, F.
N., Comin, C. H., Amancio, D. R., & Costa, L, D. F.
(2021). Principal component analysis: A natiral
approach to data exploration. ACM Computing
Surveys (CSUR), 54(4), No. 70, 1-34.
https://doi.org/10.1145/3447755

Green, L., Fristoe, N. & Myerson, J. (1994). Temporal
discounting and preference reversals in choice
between delayed outcomes. Psychonomic Bulletin &
Review 1, 383–389.
https://doi.org/10.3758/BF03213979

Johnson, S. J., Murty, M. R. & Navakanth, I. (2024). A
detailed review on word embedding techniques
with emphasis on word2vec. Multimedia Tools and
Applications, 83, 37979–38007.
https://doi.org/10.1007/s11042-023-17007-z

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., …, & Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825-2830.

Preparata, F.P., Shamos, M.I. (1985). Computational
Geometry. Texts and Monographs in Computer Science.
Springer. https://doi.org/10.1007/978-1-4612-1098-
6_3

Reimers, N., & Gurevych, I. (2019). Sentence-BERT:
Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.
http://arxiv.org/abs/1908.10084

Silge, J., & Robinson, D. (2017). Text Mining with R.
O’Reilly Media. ISBN: 9781491981658

Strunk, W., & White, E. B. (1959). The Elements of Style.
Harcourt.

Williams, J. M. (1990). Style: Toward Clarity and Grace.
The University of Chicago Press.

< Code begins on next page. >

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

102

-*- coding: utf-8 -*-

Packages Needed
Data manipulation
from IPython.display import clear_output
import pandas as pd
import numpy as np

try:
 from docx import Document
except:
!pip install python-docx
clear_output()
from docx import Document

NLP
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize, word_tokenize
import string
nltk.download('punkt')
nltk.download('stopwords')
try:
 from sentence_transformers import SentenceTransformer
except:
!pip install sentence-transformers
clear_output()
from sentence_transformers import SentenceTransformer

try:
 import spacy
 nlp = spacy.load('en_core_web_sm')
except:
!pip install spacy
!python -m spacy download en_core_web_sm
clear_output()
import spacy
nlp = spacy.load('en_core_web_sm')

Dimensionality reduction
from sklearn.decomposition import PCA

Topology calculations
from scipy.spatial import ConvexHull
from scipy.spatial.distance import euclidean

Data visualization
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.graph_objs as go
from matplotlib import cm

"""## Functions"""
def extract_text_from_docx(file_path):
 doc = Document(file_path)
 return "\n".join([para.text for para in doc.paragraphs])

def preprocess_text(text):

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

103

 stop_words = set(stopwords.words('english'))
 sentences = sent_tokenize(text)
 cleaned_sentences = []
 for sentence in sentences:
 words = word_tokenize(sentence)
 cleaned_words = [word.lower() for word in words if word.isalpha() and word not in stop_words]
 cleaned_sentences.append(" ".join(cleaned_words))
 return cleaned_sentences

def extract_nouns_verbs(sentence):
 # Process the sentence using spaCy
 doc = nlp(sentence)

 # Extract nouns and verbs
 nouns_verbs = [token.text for token in doc if token.pos_ in ('NOUN', 'VERB')]

 # Join the nouns and verbs back into a sentence
 return ' '.join(nouns_verbs)

def get_embeddings(sentences):
 model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
 return model.encode(sentences, show_progress_bar=False)

def calculate_area_and_distance(embeddings):
 # Calculate the convex hull
 hull = ConvexHull(embeddings)

 # Calculate the surface area of the convex hull
 area = hull.area

 # Calculate the total distance traveled by summing the distances between consecutive points
 total_distance = sum(euclidean(embeddings[i], embeddings[i+1]) for i in range(len(embeddings) - 1))

 return area, total_distance

def reduce_dimensions(embeddings, n_components=3):
 # Reduce the feature space
 pca = PCA(n_components=n_components)
 reduced_embeddings = pca.fit_transform(embeddings)

 # Calculate variance explained
 explained_variance = pca.explained_variance_ratio_
 total_explained_variance = np.sum(explained_variance)

 return reduced_embeddings, total_explained_variance

def plot_embeddings_with_arrows_plotly(embeddings, node_size=10, plot_height=800):
 # Create a gradient of colors from green to red
 cmap = cm.get_cmap('RdYlGn_r', len(embeddings)) # Reversed 'RdYlGn' to go from green to red
 colors = [cmap(i) for i in range(len(embeddings))] # Get color for each point
 colors = ['rgba({}, {}, {}, 1)'.format(int(c[0]*255), int(c[1]*255), int(c[2]*255)) for c in colors]

 # Initialize figure
 fig = go.Figure()

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

104

 # Add scatter points for all embeddings with gradient colors
 scatter_sizes = [node_size*2 if i == 0 or i == len(embeddings) - 1 else node_size for i in

range(len(embeddings))]

 for i in range(len(embeddings)):
 fig.add_trace(go.Scatter3d(
 x=[embeddings[i, 0]],
 y=[embeddings[i, 1]],
 z=[embeddings[i, 2]],
 mode='markers',
 marker=dict(size=scatter_sizes[i], color=colors[i]),
 name=f'Sentence {i+1}'
))

 # Add arrows as lines between points with cones at the end
 for i in range(len(embeddings) - 1):

 # Calculate the direction vector
 direction = embeddings[i + 1] - embeddings[i]

 # Normalize the direction vector and multiply by the node size to offset the arrow head
 norm_direction = direction / np.linalg.norm(direction)

 # Adjust position so the tip stops before the next node
 cone_start = embeddings[i + 1] - norm_direction * (scatter_sizes[i + 1] / 40)

 # Plot the arrow line
 fig.add_trace(go.Scatter3d(
 x=[embeddings[i, 0], cone_start[0]],
 y=[embeddings[i, 1], cone_start[1]],
 z=[embeddings[i, 2], cone_start[2]],
 mode='lines',
 line=dict(color='black', width=2, dash='solid'),
 opacity=0.6
))

 # Plot the cone
 fig.add_trace(go.Cone(
 x=[cone_start[0]],
 y=[cone_start[1]],
 z=[cone_start[2]],
 u=[norm_direction[0]],
 v=[norm_direction[1]],
 w=[norm_direction[2]],
 sizemode="absolute",
 sizeref=0.2,
 showscale=False,
 colorscale=[[0, 'black'], [1, 'black']]
))

 # Update layout to remove gray background, axis labels, and ticks
 fig.update_layout(
 title='',
 scene=dict(
 xaxis=dict(

showbackground=False, # Remove gray background from plot
showticklabels=False, # Remove axis ticks
title='', # Remove axis labels

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

105

),
 yaxis=dict(

showbackground=False,
showticklabels=False,
title='',

),
 zaxis=dict(

showbackground=False,
showticklabels=False,
title='',

)
),
 showlegend=False,

 # Adjust margins to make better use of space
 margin=dict(l=0, r=0, b=0, t=40),

 # Set the height of the plot for easier interaction and recording
 height=plot_height
)

 fig.show()

def plot_convex_hull_3d_plotly(embeddings, plot_height=1000):
 # Ensure embeddings are in 3D
 if embeddings.shape[1] > 3:
 embeddings = reduce_dimensions(embeddings, n_components=3)

 # Compute the convex hull
 hull = ConvexHull(embeddings)

 # Create the plotly figure
 fig = go.Figure()

 # Plot the convex hull by adding the triangles that make up the hull
 for simplex in hull.simplices:
 # Each simplex is a triangle in 3D space
 fig.add_trace(go.Mesh3d(
 x=embeddings[simplex, 0],
 y=embeddings[simplex, 1],
 z=embeddings[simplex, 2],
 color='rgba(0, 0, 255, 0.8)', # Set a translucent color for the triangles
 opacity=0.5,
 showscale=False
))

 # Plot the red lines along the edges of the convex hull
 for i in range(len(hull.simplices)):
 for j in range(3):
 fig.add_trace(go.Scatter3d(

x=[embeddings[hull.simplices[i, j], 0], embeddings[hull.simplices[i, (j+1) % 3], 0]],
y=[embeddings[hull.simplices[i, j], 1], embeddings[hull.simplices[i, (j+1) % 3], 1]],
z=[embeddings[hull.simplices[i, j], 2], embeddings[hull.simplices[i, (j+1) % 3], 2]],
mode='lines',
line=dict(color='red', width=3),
showlegend=False

))

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

106

 # Update layout to remove gray background, axis labels, and ticks
 fig.update_layout(
 title='',
 scene=dict(
 xaxis=dict(

showbackground=False, # Remove gray background from plot
showticklabels=False, # Remove axis ticks
title='', # Remove axis labels

),
 yaxis=dict(

showbackground=False,
showticklabels=False,
title='',

),
 zaxis=dict(

showbackground=False,
showticklabels=False,
title='',

)
),
 showlegend=False,

 # Adjust margins to make better use of space
 margin=dict(l=0, r=0, b=0, t=40),

 # Set the height of the plot for easier interaction and recording
 height=plot_height
)

 # Show the plot
 fig.show()

"""## Read in the different articles"""
files = [
 'Falligant et al..docx',
 'Mohamed et al..docx',
 'Randall et al..docx',
 'Regaço et al..docx',
 'Craig et al..docx',
 'Simon.docx',
 'Williams et al..docx']
texts = [extract_text_from_docx(file) for file in files]

"""## Preprocess the Text"""
processed_texts = [preprocess_text(text) for text in texts]

noun_verb = []
for text in processed_texts:
 nouns_verbs_text = [extract_nouns_verbs(sentence) for sentence in text]
 nouns_verbs_text = [sent for sent in nouns_verbs_text if len(sent)>1]
 noun_verb.append(nouns_verbs_text)

"""## Generate Vector Embeddings"""
embeds = []
for text in noun_verb:
 embeds.append([get_embeddings(sentences) for sentences in text])

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

107

"""## Emergence of topics through each manuscript"""
vac = []
convex_hull = []
tot_dist = []

for article in embeds:
 reduced_embeddings, vac_embeds = reduce_dimensions(embeds[article])
 vac.append(vac_embeds)
 area, total_distance = calculate_area_and_distance(reduced_embeddings)
 convex_hull.append(area)
 tot_dist.append(total_distance)
 plot_embeddings_with_arrows_plotly(reduced_embeddings, plot_height=1000)
 plot_convex_hull_3d_plotly(reduced_embeddings)

All texts
all_embeds = [item for sublist in embeds for item in sublist]
reduced_embeddings, vac_embeds = reduce_dimensions(all_embeds)
vac.append(vac_embeds)
area, total_distance = calculate_area_and_distance(reduced_embeddings)
convex_hull.append(area)
tot_dist.append(total_distance)
plot_embeddings_with_arrows_plotly(reduced_embeddings, plot_height=1000)
plot_convex_hull_3d_plotly(reduced_embeddings)

"""## Metrics from each article"""
docs = [
 'Falligant et al.',
 'Mohamed et al.',
 'Randall et al.',
 'Regaço et al.',
 'Simon',
 'Craig et al.',
 'Williams et al.',
 'All Articles'
]

metrics = pd.DataFrame({
 'document': docs,
 'vac':vac,
 'convex_hull':convex_hull,
 "total_distance":tot_dist
})

Invert colors
plt.figure(figsize=(7, 7.5))
plt.scatter(metrics['convex_hull'], metrics['total_distance'], s=500, alpha=0.5, c='red')

Axis labels with inverted color
plt.xlabel('Convex Hull Volume', fontsize=28, color='white', labelpad=12)
plt.ylabel('Euclidean Distance to Travel', fontsize=28, color='white', labelpad=12)

Annotate bubbles with text in white
for i, txt in enumerate(metrics['document']):
 plt.annotate(txt, (metrics['convex_hull'][i]+5.5, metrics['total_distance'][i]),

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2024, 35, 98-108

108

fontsize=12, ha='left', va='center', color='white')

Set limits
plt.ylim(250, 1100)
plt.xlim(120, 260)
plt.yscale("log")
ticks = [300, 600, 1200, 2400]
plt.yticks(ticks=ticks, labels=ticks)

Invert colors for the plot background and spines
plt.gca().set_facecolor('#101010')
plt.gca().spines['top'].set_color('white')
plt.gca().spines['bottom'].set_color('white')
plt.gca().spines['left'].set_color('white')
plt.gca().spines['right'].set_color('white')

Invert tick colors
plt.gca().tick_params(axis='x', colors='white')
plt.gca().tick_params(axis='y', colors='white')

Remove the top and right spines
sns.despine(top=True, right=True, left=False, bottom=False)

Set the figure background to black
plt.gcf().set_facecolor('#101010')

Show the plot
plt.show()

